

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Spectral Studies of Some Pyridine and Bipyridine Complexes of Platinum(II)

Badri Vishal Agarwala^a

^a Chemical Laboratories, University of Allahabad, Allahabad, India

To cite this Article Agarwala, Badri Vishal(1981) 'Spectral Studies of Some Pyridine and Bipyridine Complexes of Platinum(II)', *Spectroscopy Letters*, 14: 3, 187 — 193

To link to this Article: DOI: 10.1080/00387018108062575

URL: <http://dx.doi.org/10.1080/00387018108062575>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SPECTRAL STUDIES OF SOME PYRIDINE AND BIPYRIDINE
COMPLEXES OF PLATINUM(II)

Badri Vishal Agarwala
Chemical Laboratories, University of Allahabad
Allahabad 211002, India.

Introduction

The increasing importance of complexes of platinum(II) owing to their potential use as antitumour drugs has aroused interest¹. Coordination compounds formed by nitrogen donor ligands have been found to be significant in this context. Some of the important *cis*-platinammine active antitumour drugs bind covalently to DNA under specific conditions, whereas the inactive *trans*- compound does not. Spectral studies of dichloro(2,2'-bipyridine)platinum(II)², *cis*- and *trans*-dichloro(dipyridine)platinum(II)³ have been undertaken anticipating that these platinum(II) compounds in coordination with a base would provide additional evidence on the electronic configuration of such complexes. *cis*-Pt(py)₂Cl₂ has recently been found to be of biochemical importance and its antitumour and antimitogenic properties have been reported⁴⁻⁶. It is less toxic to mice and increases the survival time of mice affected by tumour. Pfeffer⁷ has studied the ir and Raman spectra of *cis*- and *trans*-Pt(py)₂Cl₂ and coordinate bonding

property has also been probed by X-ray studies⁸⁻⁹. Substitution¹⁰ and redox reactions of $\text{Pt}(\text{bipy})\text{Jl}_2$ have also been investigated¹¹⁻¹². ESCA studies and its correlation with nuclear quadrupole resonance¹³ and solvent effects¹⁴ on its electronic spectra has also been reported.

In the present investigation, magnetic circular dichroism along with electronic absorption spectra have been described. NMR and magnetic studies have in addition been recorded for these complexes of platinum to further elucidate their configuration. The bipyridine complex of platinum has been studied in several solvents due to its fair solubility and the solvent effect has been discussed. The shift in absorption band with an increase in the proton-donating power of solvent was reported earlier for the complex $\text{cis-}[\text{Fe}(\text{bipy})_2(\text{CN})_2]$.¹⁵

Experimental

K_2PtCl_4 was obtained from Wako Pure Chemical Industries Ltd., Japan. Freshly distilled pyridine and other solvents were used. Complexes were prepared according to literature methods^{2,3} and checked by elemental analysis.

Anal. Found: C, 28.09; H, 1.79; N, 6.58; Cl, 16.77%, calcd. for $\text{C}_{10}\text{H}_8\text{Cl}_2\text{N}_2\text{Pt}$: C, 28.44; H, 1.91; N, 6.6; Cl, 16.8%. Found (cis-): C, 28.37; H, 2.28; N, 6.75; Cl, 16.28%. Calcd. for $\text{C}_{10}\text{H}_{10}\text{Cl}_2\text{N}_2\text{Pt}$ (cis- & trans-): C, 28.30; H, 2.37; N, 6.60; Cl, 16.73%. Found (trans-): C, 28.01; H, 2.35; N, 6.56; Cl, 17.14%.

Electronic absorption spectra was recorded on a Shimadzu automatic recording spectrophotometer model MPS-50. MCD spectra was obtained on a JASCO ORD/UV-5 spectrometer

with its electromagnet. NMR spectra was taken on a 100 MHz JEOL spectrometer using TMS as standard. Gouy's balance was used for magnetic susceptibility measurements at room temperature.

Results and Discussion

The electronic absorption spectra of cis- and trans- $\text{Pt}(\text{py})_2\text{Cl}_2$ were recorded in chloroform as well as in KBr disc. Weak absorption band arising from d-d transition is observed for the feebly coloured complex in the visible region at $27,000 \text{ cm}^{-1}$ ($\epsilon = 45$) and five absorption bands in the ultra-violet region for the trans- compound (Table 1). Pyridine itself shows vibrational bands ¹⁶ at about 40,820, 39,525, 38,910 and $38,020 \text{ cm}^{-1}$, hence the absorption bands appear due to obvious reasons.

In the cis- compound, the weak d-d band is shifted to $34,200 \text{ cm}^{-1}$ and also in MCD spectra. Absorption band at $38,000 \text{ cm}^{-1}$ may be assigned to a $\pi - \pi^*$ transition of pyridine

Table 1. Absorption maxima of cis- and trans- $\text{Pt}(\text{py})_2\text{Cl}_2$ in CHCl_3 and MCD data

$\text{cis-Pt}(\text{py})_2\text{Cl}_2$ Absorption spectra (kk) CHCl_3	$\text{trans-Pt}(\text{py})_2\text{Cl}_2$ Abs. sp.(kk) CHCl_3
34.2	33.4 sh
38.6	35.7
	37.0
	38.0
	38.7
	27.0
	28.3
	30.6
	32.3
	36.0
	37.5

in favour to $\pi\pi$ band. An absorption band observed in solid state spectra at $38,400 \text{ cm}^{-1}$ arises of the same transition. It may be postulated that the expected $n-\pi^*$ transition due to the presence of a lone pair of electrons in nitrogen atom of the pyridine molecule submerged under the $\pi-\pi^*$ transition.

From studies of absorption spectra in various solvents the maxima of electronic absorption and MCD extrema were obtained (Table 2)

Band 1 is assigned to a MLCT in preference to d-d band because of normal dispersion of MCD spectra which agrees with earlier work¹⁴. The extinction coefficient of this band (ca. $3500 \text{ l.mol}^{-1}\text{cm}^{-1}$) is also consistent with such an assignment. Vibrational fine structure for band 2 is observed in the u.v. region due to $\pi-\pi^*$ transition of coordinated bipyridine. This assignment is in agreement with the MCD spectrum, which is positive in this region.

Similar observations have been made on luminescence studies of tris(bipyridine)rhodium(III) ion¹⁷. Band 3 shows strong solvent effect and it shifts from 33.4 nm in DCB to 36.6

Table II. Solvent effects on the electronic absorption spectra of the complex $\text{Pt}(\text{bipy})\text{Cl}_2$

Solvent	Band 1	Band 2	Band 3	Band 4	
				$\nu_{\text{max}}/\text{nm}$	
1. Chloroform	25.0, 26.3 sh	30.8, 32.0	35.1		39.2
2. Methanol	26.5	31.1, 32.2	36.6		39.8
3. Dimethylsulphoxide (DMSO)	26.0	30.6, 31.7	36.0 sh	Solvent	
4. 1,1,2,2-Tetrachloroethane (TCE)	25.3	30.8, 31.9	35.0	absorbs	
5. o-Dichlorobenzene (DCB)	24.2	30.5, 31.7	33.4		"
6. N,N-Dimethylformamide (DMF)	25.8	30.6, 31.8	35.7		"

Table III. Solvent effects on magnetic circular dichroism spectra of the complex $\text{Pt}(\text{bipy})\text{Cl}_2$

Solvent		KK	
1. Chloroform	23.5	30.5,34.0	38.0,39.5
2. methanol	22.5	30.8,35.4	39.5
3. Dimethylsulphoxide	24.7	29.0,30.5	37.0
4. 1,1,2,2-Tetrachloroethane	24.0	26.8,28.3	30.7,34.3
5. o-Dichlobenzene	23.0	29.8	
6. N,N-Dimethylformamide	24.5	30.3	34.5

in MeOH (3.2 KK). Band 3 is again assigned to MLCT band because of normal MCD dispersion at $35,400 \text{ cm}^{-1}$. Band 4 could not be observed in solvents DMSO , TCE , DCB and DMF due to strong absorption in higher wavenumbers. However, band 4 observed in CHCl_3 is reasonably assigned to $\pi - \pi^*$ transition of bipyridine, as suggested by Rossiello and Furlani¹⁸ which is true for MeOH medium as well. The presence of *o*-, *m*- and *p*-protons of pyridine were indicated by $^1\text{H-NMR}$ spectra in the *trans*- compound. All the platinum(II) complexes were found to be diamagnetic which is in conformity with their square planar arrangement.

Summary

Electronic absorption spectra and magnetic circular dichroism of three square planar Pt(II) complexes, cis- and trans- $\text{Pt}(\text{py})_2\text{Cl}_2$ and $\text{Pt}(\text{bipy})\text{Cl}_2$ have been described. Detailed studies have been carried out for $\text{Pt}(\text{bipy})\text{Cl}_2$ due to its fair solubility in many solvents and the solvent effect on its electronic spectra is investigated. The band assignments of the electronic spectra are discussed which are supported by MCD spectrum.

Acknowledgement

The experimental work was carried out at Tokyo Institute of Technology, Japan and the author is indebted to Professor H. Kobayashi for helpful suggestions and the facilities provided. He thanks Professor Arun K. Dey for his kind interest.

References

1. vide Proc. XXI ICCC, Toulouse, pp 50, 170, 171, 266, 426, 468 (1980).
2. G.T. Morgan and F.H. Burstall, J. Chem. Soc., 965 (1934).
3. G.B. Kauffmann, Inorg. Synthesis, Vol. VII, 249 (1963).
4. G.R. Gale, J.A. Howle and E.M. Wlaker,Jr., Cancer Res., 31, 950 (1971); Biochem. Pharmac., 21, 1465 (1972).
5. C.A. Morris, L.M. Atkins, M. Loretta and G.R. Gale, J. Med., (Westbury, N.Y.) 7, 463 (1976).
6. Z. Simon, M. Mracec, A. Maurez, S. Policec and C. Dragulescu, Rev. Roum. Biochim., 14, 117 (1977).
7. M. Pfeffer, P. Braunstein and J. Dehand, Spectrochimica Acta, Part A, 30, 341 (1974).
8. T. Ibusuki and Y. Saito, Inorg. Chim. Acta, 19, 87 (1976).
9. P. Colamarino and F.L. Orioli, J. Chem. Soc. Dalton Trans., 16, 1656 (1975).
10. M.J. Hynes and S.P. Russell, Proc.R.Ir.Acad., Sec. B, 75, 339 (1975).
11. A. Peloso, Coord. Chem. Rev., 16, 95 (1975); J. Chem. Soc. Dalton Trans., 984 (1976).
12. K.D. Buse, H.J. Keller and H. Pritzkow, Inorg. Chem., 16, 1072 (1977).
13. D.T. Clark, D. Briggs and D.B. Adams, J. Chem. Soc. Dalton Trans., 169 (1973).
14. P.M. Gidney, R.D. Gillard and B.T. Heaton, J. Chem. Soc. Dalton Trans., 132 (1973); 2133 (1974).

15. H. Kobayashi, B.V. Agarwala and Y. Kaizu, Bull. Chem. Soc. Japan, 48, 465 (1975).
16. H.H. Jaffe and C. Milton, Theory and Applications of Ultraviolet Spectroscopy, John Wiley & Sons, Inc., p.332 (1962).
17. D.H.W. Casstons and G.A. Crosby, J. mol. Spect., 34, 113 (1970).
18. L.A. Rossiello and G. Furlani, Ricerca Sci., 8, 1416 (1965).

Received: January 16, 1981
Accepted: February 11, 1981